Πέμπτη 6 Μαΐου 2010

Θέματα Βαλκανικής Μαθηματικής Ολυμπιάδας.

1) Αν οι a,b,c είναι θετικοί πραγματικοί αριθμοί να αποδείξετε ότι:

\displaystyle\frac{a^2b(b-c)}{a+b}+\frac{b^2c(c-a)}{b+c}+\frac{c^2a(a-b)}{c+a}\geq 0

2) Έστω ABC ένα οξυγώνιο τρίγωνο με ορθόκεντρο H και έστω M το μέσο της AC. Η κάθετη από το σημείο C προς την AB την τέμνει στο σημείο C_1 και έστω H_1 το συμμετρικό του H ως προς την AB. Οι προβολές του H πάνω στις AH_1, AC και BC είναι τα σημεία P,Q,R αντίστοιχα. Αν M_1 είναι ένα σημείο ώστε το περίκεντρο του τριγώνου PQR να είναι το μέσο του τμήματος MM_1 να αποδείξετε ότι το M_1 βρίσκεται επί της ευθείας BH_1.

3) Ονομάζουμε λωρίδα πλάτους w το σύνολο των σημείων που βρίσκονται ανάμεσα ή πάνω σε δύο παράλληλες ευθείες που απέχουν απόσταση w. Έστω S ένα σύνολο από n σημεία (n\geq 3) στο επίπεδο που είναι τέτοιο ώστε οποιαδήποτε 3 διαφορετικά σημεία του συνόλου S να μπορούν να καλυφθούν από μία λωρίδα πλάτους 1. Να αποδείξετε ότι τα σημεία του συνόλου S μπορούν να καλυφθούν από μία λωρίδα πάχους 2.

4) Για οποιοδήποτε ακέραιο n (n\geq 2), συμβολίζουμε με f(n) το άθροισμα όλων των θετικών ακεραίων που ο καθένας είναι ίσος το πολύ με n και δεν είναι πρώτος προς το n. Να αποδείξετε ότι f(n+p)\neq f(n) για οποιοδήποτε αριθμό n και οποιοδήποτε πρώτο p.


Από τον δικτυακό τόπο mathematica.gr

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου